

47

A Practical Model for Measuring Code Complexity of PHP

Cho Thet Mon, Khin Mar Myo

University of Computer Studies, Mandalay
chothetmonucsm@gmail.com,kmmyo.ag@gmail.com

Abstract

Software quality metric for PHP is scarce in
literature. This paper presents a technical and
research overview of software quality assessment
especially for software complexity to establish a
software quality observatory for PHP language since
PHP is one of the most popular languages that millions
of websites and web applications are developed every
month using PHP. Complexity is one important quality
for software source codes. In this paper, software
metric related to code complexity is investigated and a
suitable set of metric is identified for the given system.
Here, we present motivating examples, tool and
techniques that can be used to evaluate the quality of
source code. We have carried out an empirical study
and tried to find out the nature of relationship between
the metric and other well-known metric. In other
words, it has been investigated whether complexity
features may have positively or negatively on the code
maintainability effort.

1. Introduction

Computer software has become a driving force
and is used in all sorts of everyday activities. At the
same time, the demand for sophisticated and flexible
software also increases. Currently, software market is
driven by urgent market needs which drive software
developers to produce software without delay in
delivery. Such urgency causes a lot of problems in
producing quality software. In addition, software
maintenance becomes extremely difficult. In most
cases, the delivered product is not reliable. Hence,
quality assurance, customer satisfaction and reliable
products are immediate needs of current software
industries. The intent of software engineering is to
provide a framework for building software with higher
quality [8].

Software measurement gives an excellent
opportunity for software developers to evaluate their
own products, to convince themselves the outcome of
the software development process and to estimate or
predict the efforts required for a future product.
Research on software metrics is an ongoing process for

several decades. Software metrics are helpful in several
activities of the software development life cycle, and
therefore contribute to the overall objectives of
software quality.

Controlling and minimizing software complexity
is the most important objective of each software
development paradigm because it affects all other
software quality attributes including reusability,
reliability, testability and maintainability. For this
purpose, a number of software complexity measures
have been reported to quantify different aspects of
complexity.

Software complexity is traditionally a direct
indicator of software quality and cost [1-5]. The greater
the complexity (by some measure), the more fault
prone the software resulting in higher cost. Logically,
many of these measures have been shown to be
correlated in some manner. Understanding these
relationships is important to understand and evaluate
the metrics themselves and ultimately in reducing
software development and maintenance efforts.

If complexity could somehow be identified and
measured, then software developers could adjust
development, testing, maintenance procedures and
effort accordingly. This concern has motivated several
researchers to define and validate software complexity
measures and establish relationship between software
complexity and maintenance effort [23, 19, and 22].

Earlier complexity metrics are not sufficient to
determine complexity of the class. One of the problems
of Cyclomatic complexity is that it only considered
control flow complexity and it ignored unstructured
properties. Halstead complexity is based on the
assumption that a program is made only of operators
and operands and it ignored other properties.
Moreover, weighted method per class (WMC) is only a
partial view of complexity. In this respect, a more
complete model of program complexity is introduced
with the increased spread of Object-Oriented
programming for the need of a metric suite that could
take into consideration the complexity of Object-
Oriented structure. The system contributes new set of
metrics for PHP codes especially for object-oriented
PHP to develop a tool that can automatically collect
complexity attributes, to investigate the relation

48

between the proposed software metric and other
indicator of software quality and to assess and evaluate
the effectiveness and usefulness of proposed metrics
theoretically and empirically.

2. Related Works

Software complexity measures attempt to
quantify intuitive notions of program complexity. Most
software complexity measures are based on measuring
a single program characteristic which is deemed the
most significant factor contributing to the conceptual
complexity of a program.

Various OO complexity and quality metrics
have been proposed and their reviews are available in
the literature. Rajnish et al [10] has studied the effect of
class complexity (measured in terms of lines of codes,
distinct variables names and function) on development
time of various C++ classes. Kulkarni et al [11]
presents a case study of applying design measures to
assess software quality. Sanjay et al [17] applied their
proposed metric on a real project for empirical
validation and compared it with Chidamber and
Kemerer metrics suites [14] and their theoretical,
practical, empirical validations and the comparative
study to prove the robustness of the measure. Alshayeb
and Li have presented an empirical study of OO
metrics in two processes [12]. They predict that OO
metrics are effective in predicting design efforts and
lines of source code added, changed and deleted in one
case and ineffective in other. Emam, Benlarbi, Goel
and Rai validate the various OO metrics for effects of
class size [6]. Yacoub et al [20] defined two metrics for
object coupling (Import Object Coupling and Export
Object Coupling) and operational complexity based on
state charts as dynamic complexity metrics. The
metrics are applied to a case study and measurements
are used to compare static and dynamic metrics.
Jagdish et al [7] described an improved hierarchical
model for the assessment of high-level design quality
attributes in OO design. In their model, structural and
behavioral design properties of classes, objects, and
their relationships are evaluated using a suite of OO
design metrics. Their model relates design properties
such as encapsulation modularity, coupling and
cohesion to high-level quality attributes such as
reusability, flexibility, and complexity using empirical
and anecdotal information. Munson et al [3] showed
that relative complexity gives feedback on the same
complexity domains that many other metrics do. Thus,
developers can save time by choosing one metric to do
the work of many.

 3. Software Complexity

Software complexity is the most important
attribute of a software product. It influences in various
degrees, all software quality characteristics, starting
from maintainability, reliability, reusability, testability.
Developing software products to meet current business
needs already means developing complex systems,
because of the complexity of the business that has to
model.

Code complexity metrics play an important role
in software development process. But despite
of numerous studies many questions are still
open partially due to new programming languages
appearance, design paradigm evolutions and lack
of factual material. The main objectives of this
work are to obtain quality metrics for a number
of small and medium real world PHP languages, to
assess the complexity quality of the language and to
identify the relations between complexity and
maintenance effort.

3.1. Software Metric Tool Selection

The importance of measuring and controlling
the quality of the source code has determined
the development of tools which can measure software
metrics automatically based on the source code. These
tools, either integrated in each developer’s IDE
or used separately, are applied on a regular basis to
identify the deviations of the metrics from the ranges
initially defined.

The accepted values for the metrics are defined
based on the specific project requirements, company
quality criteria or industry best practices. Depending
on the metrics required for a project, one or more
tools can be used.

Several such open source tools for measuring
software metrics are available on sourceforge.
Net portal [24]. There are small projects, standalone
applications or plug-ins for various IDE products
like Eclipse, Net Beans, IDEA or Visual Studio;
they support one or more programming languages,
like C, C++, Java, C#. For finding a set of
suitable software metric tools, we conducted a free
search on the internet.

In the proposed system, PHPMD tool will
be used to obtain required attributes for
code complexity. We chose to analyze PHP
class files and the detail of PHPMD can be viewed in
[25].

3.2. Attribute Selection and Proposed Metric

49

The original usage of PHPMD tool is to scan
PHP source code and to find potential problems such as
possible bugs, dead code, suboptimal code and
overcomplicated expressions by using the rules.

Although there are 31 rules that can measure
from PHPMD, we only emphasized on which factors
are responsible for the complexity of the code. This
tool is run from command line window to test PHP cod
files and xml files are exported.

These files are parsed and extracted using DOM
parser and we select some rules that can affect code
complexity according to several research papers [13, 2,
21 and 9] and a new complexity metric is introduced
based on the following factors:

Weighted Method per Class (WMC) - number of
class methods’ complexity

Nested block depth (NBD) - number of class
methods’ NBD

Number of parameters (PAR) - number of class
methods’ parameters

Depth of inheritance tree (DIT) - number of
ancestor classes measured from the hierarchy root
(class object for PHP)

Number of children (NC) - number of direct
subclasses of a class

Attribute Complexity (AC) - number of attribute
used in class file

)1(1 1 1 1 1 1

ELOC

ACNCDITPARNBDWMC
CM

j

i

k

i

l

i

m

i

n

i

o

i
php

∑ ∑ ∑ ∑ ∑ ∑+++++
= = = = = = =

Where CMphp = Complexity metric of PHP

j= number of WMC

k= number of NBD

l= number of PAR

m= number of DIT

n= number of NC

o= number of AC

The attributes were summed up to obtain the
proposed complexity metric, based on the assumption
that “measures must be additive (i.e., if two
independent structures are put into sequence, then the
total complexity of the combined structure is simply
the sum of the complexities of the independent
structures)” [16].

In Figure 1, a sample PassResult.php code is
shown and the required quality attributes will be
extracted. PHPMD tool is run to test this code and the
following xml file is reported.

<?php
class PassResult {
 var $passResult;
 var $failResult;
 private static function showResult() {
 echo "Call pass::showResult()\n";
 }
 public static function do_showResult() {
 PassResult::showResult();
 }
}
PassResult::do_showResult();

class FailResult {
 public static function showResult() {
 echo "Call fail::show()\n";
 PassResult::showResult();
 }
}
failResult::showResult();
echo "Done\n";
?>

Figure 1. A sample PassResult.php code

<? xml version="1.0" encoding="UTF-8" ?>
<pmd> <filename="D:\workspase\PHPQualityMetrics\PassReslt.php>
<violationbeginline="3"endline="13"rule="TooManyFields"
ruleset="CodeSizeRules" class=”PassResult" priority="3">
Attribute Complexity 2
</violation>
<violationbeginline="3"endline="13"rule="ClassComplexity"
ruleset="CodeSizeRules" class="PassResult" priority="3">
Method Complexity 2
</violation>
<violationbeginline="6"endline="8"rule="CyclomaticComplexity"
rueset="CodeSizeRules" class="PassResult"
method="showResult" priority="3">
Cyclomatic Complexity 1
</violation>
<violationbeginline="6"endline="8"rule="NPathComplexity"
ruleset="CodeSizeRules" class="PassResult"
method="showResult" priority="3">
NPath Complexity 1
</violation>
<violationbeginline="6"endline="8"rule="ParameterList"
ruleset="CodeSizeRules" class="PassResult"
method="showResult" priority="3>
No of Parameters 0
</violation>
<violationbeginline="10"endline="12"rule="CyclomaticComplexity"rule
set="CodeSizeRules" class="PassResult"
method="do_showResult" priority="3>
Cyclomatic Complexity 1
</violation>
<violationbeginline="10"endline="12"rule="NPathComplexity"
ruleset="CodeSizeRules" class="PassResult”
method="do_showResult" priority="3">
NPath Complexity 1
</violation>
<violationbeginline="16"endline="21"rule="ClassComplexity"
ruleset="CodeSizeRules" class="FailResult"priority="3">
Method Complexity 1
</violation>
<violationbeginline="16"endline="21"rule="CouplingBetweenObject"ru
leset="DesignRules" class="FailResult" priority="2">
Coupling between Objects Value 1
</violation>
<violationbeginline="17"endline="20"rule="CyclomaticComplexity"rule
set="CodeSizeRules" class="FailResult"
method="showResult" priority="3">
Cyclomatic Complexity 1
</violation>
<violationbeginline="17"endline="20"rule="NPathComplexity"
rulest="CodeSizeRules" class="FailResult"
method="showResult" priority="3">
NPath Complexity 1
</violation>
</file> </pmd>

Figure 2. XML file report

50

DOM parser is used to parse the required
attributes from Figure 2 and complexity is computed
according to (1).

3.3. Analysis

Many research papers used MI as
maintainability indicator to validate and predict the
maintainability of their proposed metrics [15].

Maintainability Index is a software metric which
measures how maintainable (easy to support and
change) the source code is. It is calculated as a factored
formula consisting of Lines of Code, Cyclomatic
Complexity and Halstead volume that is shown in (2).

)2()(ln*2.16)(*23.0)(ln*2.5171 LOCgCCVMI −−−= Wher

e V= Halstead Volume

CC (g) = Cyclomatic Complexity per module

LOC = Lines of Code per module

If maintainability of system is better, its
maintainability index should be higher and vice versa.

In [12], there are a lot of studies done on
measuring software metrics and analyzing the
correlation between them to determine the way
software characteristics are influencing each other and
are influenced by software complexity. According to
[21], more complexity implies more possibility of
faults and hence less quality.

Complexity can lead to subtle vulnerabilities
that are difficult to test and diagnose [4], providing
more chances for attackers to exploit. Complex code is
difficult to understand, maintain, and test [20].
Therefore, complex code would be more difficult to
maintain than simple code.

In software engineering, empirical study
involves introducing assumptions or hypotheses about
observed phenomenon, investigating of the correctness
of these assumptions and evolving it into body
knowledge. In order to validate any metric as an
indicator of software quality, experimental hypotheses
are tested to confirm or refute relationship between two
or more variables.

From this reasoning, the following hypothesis
was proposed to identify whether there is a consistent
relation between complex code and maintainability
index or not:

H1: The higher the software complexity, the
more difficult it is to understand its source code for
maintenance. This leads to a decrease in the
maintenance effort [16 and 18].

The hypothesis will be evaluated by a set of
statistical analysis techniques to clearly understand the

relationship between maintainability and the defined
metric.

For hypothesis H1, if the correlation is
significant at the p-value 0.05 level or p<0.05, we will
we accept the hypothesis H1 otherwise we will reject
H1.

To verify this, each of the characteristics studied
and put in relation with software complexity and then
evaluated through a set of software metrics. In the
system, 120 PHP programs are used to measure
complexity and maintainability index for these
program are also calculated. Then, the relation between
them is studied by applying correlation indicator,
PEARSON coefficient being one of them.

The correlation coefficient is a numerical value
between -1 and 1 that expresses the strength of the
linear relationship between two variables. When r is
closer to 1, it indicates a strong positive relationship. A
value of 0 indicates that there is no relationship. The
value close to -1 signals a strong negative relationship
between the two variables.

Putting in relation indicator CMphp and MI,
PEARSON coefficient has the following value:

() ()
()3 0.29266-

)
)(

()
)(

(

),(
2

2
2

2

=

−−

−
=

∑
∑∑

∑
∑∑

n

MI
MI

n

CM
CM

n

MICM
MICM

MICMr
php

php

php
php

php

Where, CMphp= Complexity Metric of PHP Files

MI= Maintainability Index

 n= Number of Pairs

 r= Correlation Coefficient

The value in (3) will indicate that there is a
negative correlation between code complexity and MI
from source code defined through PHPMD. Moreover,
we need to use critical value table to determine weak or
strong correlation between variables. To do so, degree
of freedom is computed. For a correlation study, the
degree of freedom is equal to 2 less than the number of
subjects we have. And then, critical value table is used
to find intersection of alpha and degree of freedom. In
[26], it shows critical values and how to use critical
value table. According to result, r (120) =-.029266,
p<0.05 means that for 120 PHP files, there is
significant relationship between complexity metric and
MI. That is because p value less than 0.05 means that
our correlation coefficient is less than critical value on
the table and we can be 95% confident that the
relationship exits. This statement supports our
hypothesis H1. The scatter plot of their relation is
shown in Figure 1.

51

In this respect, the hypothesis H1 accepts: there
is a statically significant relationship between
complexity and MI at r=-0.29266.

Figure 3. Scatter plot for correlation between
complexity and MI

The more complex a piece of software, the more
effort is required to maintain it. The higher the
software complexity, the more difficult it is to
understand its source code for maintenance and
evolution purposes. Hypothetically, complexity metric
has been shown to have a strong negative correlation
with MI.

Figure 4. Comparison results of complexity and MI

A graph which covers comparison between
complexity and MI values is also plotted in Figure 4 to
observe the relation between them. As shown the graph
in Figure 4, it is evident that the proposed complexity
metric gives result which is opposite trends to the
results given by MI. In other words, when code
complexity is increase, MI value is decrease.

4. Conclusion and Future Works

In this paper, code complexity metric for PHP is
introduced using PHPMD tool. By using our system,
developer can easily assess the quality of PHP code
and the features of PHP code. This may help to

developer as an automated quality assessment tool to
measure complexity of PHP code.

We have carried out an empirical study using
statistical method and tried to find out the nature of
relationship between the metric and code
maintainability. In other words, it has been investigated
whether the complexity metric is significantly
associated with easy to maintain or not. Sample 120
PHP class files have been taken from the web and used
for this purpose. More similar type of studies must be
carried out with large data sets to get an accurate
measure. We plan to replicate our study on large data
set for different types of open source software system.

References

[1] A. Ganpati, “Maintainability Index over Multiple
Releases: A Case Study PHP Open Source Software”,
International Journal of Engineering Research &
Technology (IJERT), Vol. 1 Issue 6, August – 2012

[2] C. Adrian, PhD, University Lecturer, “On Measuring
Software Complexity”, Academy of Economic Studies,
Bucharest, Romania

[3] C.J. MunsonX and M.T. Khoshgoftaar, “Measuring
Dynamic program Complexity”, IEEE Software, Vol. 9,
No. 6, 1992, pp. 48-55

[4] D. Coleman, D. Ash and H. Packard, “Using Metrics to
Evaluate Software System Maintainability”

[5] D. Stavrinoudis, “Relation between Software Metrics
and Maintainability”

[6] EL.K. Emam, S. Benlarbi, N. Goel and N.S. Rai, “The
Confounding Effect of Class Size on the Validity of
Object-Oriented Metrics”, IEEE Trans. Software Eng.,
Vol. 27, No.7, 2001, pp. 630 – 650.

[7] J. Bansiya and C.G. Davis, “A Hierarchical Model for
Object-Oriented Design Quality Assessment”, IEEE
Transaction on Software Engineering, Vol.28, No. 1,
2002, pp. 4-17

[8] Kaiserslautern, H. Dieter Rombach, “The impact of
design complexity on software cost and quality”,
Germany, 2010

[9] K.D. Mrinal, D. Swapan, D.Nikhil, C. Kunal and J.
Anupam, “A Review and Analysis of Software
Complexity Metrics in Structural Testing”

[10] K. Rajnish and V. Bhattacherjee, “Complexity of
Class and Development Time”: Journal of theoretical
and Applied Information Technology (JATIT), Asian
Research Publication Network (ARPN), Scopus
(Elsevier) Index, Vol. 3, No. 1, 2006, pp. 63-70.

[11] L. Kulkarni, R.Y. Kalshetty and V.G. Ard , “Validation
of CK metrics for Object-Oriented Design
Measurement”, Proceedings of third international
conference on Emerging Trends in Engineering and
Technology, IEEE Computer Society, 2010, pp. 646-651

[12] M. Alshayeb and W. Li, “An Empirical Validation of
Objec-Oriented Metrics in Two Different Iterative

52

Software Processes”, IEEE Trans. on Software
Engineering, Vol. 29, No. 11, 2003,pp.1043 – 1049.

[13] P. Abdul Jabbar and S. Sarala ,”Advanced Program
Complexity Metrics and Measurement”

[14] R.S. Chidamber and F.C. Kemerer, “A Metric Suite for
Object-Oriented Design”, IEEE Transaction on
Software Engineering, Vol. 20, No. 6, 1994, pp. 476-
493

[15] R. Victor Basili, L. Briand, et al., “A Validation of
Object-Oriented Design Metrics as Quality Indicators”

[16] S. Henderson, “Object Oriented Metrics. Measures of
Complexity”, Prentice Hall PTR, Upper Saddle River,
New Jersey, 1996.

[17] S. Misra , I. Akman and M. Koyuncu, “An inheritance
complexity metric for object-oriented code :A cognitive
approach”, Indian Academy of Sciences, Vol. 36, Part
3, 2011, pp. 317–337.

[18] S. Nasib Gill and S. Sunil, “Correlating Dimensions of
Inheritance Hierarchy with Complexity & Reuse”

[19] S. R. Chidambera and C.F. Kemerer, “A Metrics Suite
for Object Oriented Design”, IEEE Transactions on
Software Engineering, 1994, pp. 476-492.

[20] S. Yacoub, T. Robinson and H.H. Ammar, “Dynamic
Metrics for Object-Oriented Design”, Proceedings of
6th International Conf. on Software Metrics
Symposium, 1999, pp. 50-61.

[21] T. McCabe, “A Software Complexity Measure”, IEEE
Transactions on Software Engineering SE-2(4): 308-
320, 1976

[22] T.J. McCabe, “A Complexity Measure,” IEEE Trans.
Software Eng., vol. 2, no. 4, pp. 308-320

[23] V.R. Basili, L. Biand and W.L. Melo, “A validation of
object-oriented design metrics as quality indicators”,
Technical report, University of Maryland, USA., 1995

[24] http://pmd.sourceforge.net/
[25] http://phpmd.org
[26] http://faculty.fortlewis.edu/CHEW_B/Documents/Table

of critical values for Pearson correlation.htm

